機能デザイン領域 推進工学領域 流体工学グループ
コップの中に見える泡と物理
杉山研究室
炭酸水やビールなどの発泡飲料に含まれる泡は、飲み物の「のどごし」を決める官能因子です。乾いた喉を潤す手を休め、コップの中をじっくり眺めると、大小様々な物理現象を観ることができます。
例えば、コップにソーダ水を注ぐと、コップの壁についた微細な「キズ」から気泡が発生します。液体に溶けた二酸化炭素が気体となるためです。ソーダ水の気泡はあっという間に500μm程度の直径に成長し、液体と気体との密度差により浮上すると、すぐに飲料の外へと抜けていきます。
溶存気体の種類を変えると、気泡の成長と浮上の様子は別ものになります。左端の図は、窒素が溶解した飲料をコップに注いだ写真です。炭酸飲料と比べて、気泡は寸法が1/10ほど(直径50μm程度)にしか成長せず、ゆっくりと浮上します。無数の気泡が飲料中に長く留まるため、クリーミーな味わいと一緒に、気泡の集団が織りなす模様の動く様を堪能することができます(左から2つ目の図)。私たちはこの「コップの中の模様」を成す流体の動力学を調べ、「味噌汁の模様」とは別の浮力由来のカラクリにより発現することを明らかにしました。
窒素飲料中の気泡が小さいままに維持されるのは、溶存気体の量や種類が要因です。さらに、飲料に含まれる固形成分などが気液界面に吸着・脱離することに起因した「気泡同士の合体抑制効果」(右端の図)も、要因の一つと考えらます。これらの影響因子について、私たちは実験や数値計算を駆使して調査し、飲料に潜む力学法則を探求しています.
気泡を含む流れは飲料に限らず、発電施設の熱交換機や水処理施設の水質浄化装置など広く工業的に利用されています。私たちは、基礎研究により得られた知見を活かし、生活を支えるインフラなどの社会基盤技術に貢献する応用研究にも取り組んでいます。
杉山研究室
http://flow.me.es.osaka-u.ac.jp/
Last Update : 2018/02/01
生体工学領域 生体計測学講座 分子生体計測グループ
細胞が力を感知するメカニズム
−力学環境に依存した細胞機能の謎を解く−
出口研究室
私たちの体を構成する細胞の機能は「力学環境」に依存して調節されています。
ここで言う力学環境とは、例えば細胞が存在する場所の硬さや3次元微細形状が挙げられます。これらの細胞周囲の力学的な要素から影響を受けて、細胞は形態や構造を変え、かつ細胞機能を担うタンパク質シグナル伝達や、ひいては遺伝子発現が変わります。私たちのグループでは力学解析・計測と分子生物学技術の併用を主たる研究手法として、力学環境の変化に起因する物理的な力の負荷を細胞が感じ取るメカニズム(背後にある物理メカニズム、および責任分子の同定とその活性化メカニズム)の解明に取り組んでいます。
細胞が力を感知するメカニズムの一つとして、「細胞内収縮力の“設定値”の変化」があります。増殖能を有した多くの細胞種は常に収縮力、つまり自ら縮まろうとする力を発生し続けています。興味深いことに、この収縮力は細胞種ごとにレベルの定まった設定値があります。力学環境の変化に基づき細胞に外力が作用すると、それは細胞というシステムにとっては外乱としてはたらき、細胞内収縮力は元々の設定値からのずれが生じます。細胞はこのずれ、ひいては負荷された外力を感知し、変動の原因となった周囲の力学環境に適応すべく機能的・構造的応答を起こします。
最近、私たちはこの細胞内収縮力を可視化・定量評価できる技術を開発しました。写真は培養細胞が集団運動を行うときの、個々の細胞内における収縮力の変化を解析したものです。この技術(細胞収縮力アッセイまたはトラクションフォースマイクロスコピーと呼んでいます)を基礎とし、現在はどの遺伝子・タンパク質がどのようにこの細胞内在性力学量の設定値の調節に関与しているかを調べています。また、これらの現象を制御する化合物のスクリーニングに基づく創薬研究にも取り組んでいます。
出口研究室
http://mbm.me.es.osaka-u.ac.jp
Last Update : 2017/03/16
機能デザイン領域 制御生産情報講座 数理固体力学グループ
金属ガラスの構造若返り現象の解明と制御に成功
脆くなったガラスや磁気特性が変化したガラスを回復させる
尾方研究室
金属ガラスは長周期規則構造(原子が規則的にならんだ結晶構造)をもたないランダムに近い原子配列構造を有する金属材料で、高強度、高硬度で広い弾性変形領域と極めてたわみやすい性質をもった特異な金属材料です。また200~400℃程度の比較的低温で水飴のように粘性流動を示すことから、原子レベルでの平滑性をもった精密成形加工が可能であるという特徴も有しています。このような優れた特性から、次世代のスマートフォン等の小型電子端末分野等のケーシング、タッチセンサー、スイッチング、特殊ネジ材料などへの適用が期待されています。
しかしながら、このような金属ガラスでは、低温での熱履歴や成型加工等によってばらばらに配列した原子が構造緩和し、一部再配列することで脆化するということが問題となっていました。この構造緩和現象はエネルギー的に安定な方向への変化であるため、一旦緩和して脆化した金属ガラスは自発的には元に戻すことはできず、再溶解して一から作り直すしかないと考えられていました。また構造緩和は脆化等の劇的な特性変化をもたらすにもかかわらず、目視はもとより一般的な構造解析(X線回折等)や超音波探傷でも検知することができない微細な現象でした。
研究グループでは、一旦緩和させて脆化した金属ガラスをガラス構造特有の粘性流動が発現する温度(ガラス遷移温度とよばれ、通常融点の半分程度の温度)直上で極短時間熱処理した後、再度急冷することによって、そのガラス構造を延性に富んだ未緩和構造に逆戻りさせる現象(これを構造若返り現象と呼びます)を実験的に示しました。そして、その現象が起きる機構と条件を分子動力学シミュレーションによって理論的に説明し、その制御指針を構築することに成功しました。
Ref.[1] M.Wakeda, et al., Scientific Reports, 5 (2015), 10545.
[2]N.Miyazaki, et al., npj Computational Materials 2 (2016), 16013.
尾方研究室
http://tsme.me.es.osaka-u.ac.jp/jp/index.html
Last Update : 2017/02/14